网课资源-学习资料-创业项目-计算机知识-名师讲座—妖妖资源网

高二数学下册必修三知识点归纳

佐藤 高中知识点总结 2022-05-12 22:53:38

【#高二# 导语】只有高效的学习方法,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。高二频道为你整理了《高二数学下册必修三知识点归纳》希望对你有帮助!

15341465268726103.jpg

1.高二数学下册必修三知识点归纳


  锐角三角函数定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin)等于对边比斜边;sinA=a/c

  余弦(cos)等于邻边比斜边;cosA=b/c

  正切(tan)等于对边比邻边;tanA=a/b

  余切(cot)等于邻边比对边;cotA=b/a

  正割(sec)等于斜边比邻边;secA=c/b

  余割(csc)等于斜边比对边。cscA=c/a

  互余角的三角函数间的关系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

  平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  锐角三角函数公式

  两角和与差的三角函数:

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-cosAsinB?

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  辅助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  三倍角公式:

  sin(3α)=3sinα-4sin^3(α)

  cos(3α)=4cos^3(α)-3cosα

  半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  万能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  推导公式:

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

2.高二数学下册必修三知识点归纳


  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

  5.方程k=f(x)有解k∈D(D为f(x)的值域);

3.高二数学下册必修三知识点归纳


  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

  3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

4.高二数学下册必修三知识点归纳


  总体和样本

  ①在统计学中,把研究对象的全体叫做总体。

  ②把每个研究对象叫做个体。

  ③把总体中个体的总数叫做总体容量。

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量。

  简单随机抽样

  也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。

  机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  简单随机抽样常用的方法

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  ④使用统计软件直接抽取。

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  抽签法

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查。

5.高二数学下册必修三知识点归纳

  等比数列求和公式

  (1)等比数列:a(n+1)/an=q(n∈N)。

  (2)通项公式:an=a1×q^(n-1);推广式:an=am×q^(n-m);

  (3)求和公式:Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q为公比,n为项数)

  (4)性质:

  ①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

  ②在等比数列中,依次每k项之和仍成等比数列.

  ③若m、n、q∈N,且m+n=2q,则am×an=aq^2

  (5)"G是a、b的等比中项""G^2=ab(G≠0)".

  (6)在等比数列中,首项a1与公比q都不为零.注意:上述公式中an表示等比数列的第n项。

  等比数列求和公式推导:Sn=a1+a2+a3+...+an(公比为q)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)Sn-q*Sn=a1-a(n+1)(1-q)Sn=a1-a1*q^nSn=(a1-a1*q^n)/(1-q)Sn=(a1-an*q)/(1-q)Sn=a1(1-q^n)/(1-q)Sn=k*(1-q^n)~y=k*(1-a^x)。

请支持知识付费阅读!感谢!

推荐度:

登录后免费下载文档

发表评论

用户头像 游客
此处应有掌声~

评论列表

还没有评论,快来说点什么吧~