网课资源-学习资料-创业项目-计算机知识-名师讲座—妖妖资源网

高中数学必修知识点最新

厉害了 高中知识点总结 2022-09-21 15:44:42

高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,下面是小编给大家带来的高中数学必修知识点最新,以供大家参考!

高中数学必修知识点最新

一、直线与方程高考考试内容及考试要求:

考试内容:

1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

考试要求:

1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

二、直线与方程

课标要求:

1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

要点精讲:

1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.

倾斜角α的.取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

(1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;

(2)当直线l与x轴垂直时,α= 90°,k 不存在。

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

4.两条直线的平行与垂直的判定

(1)若l1,l2均存在斜率且不重合:

①;②

注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

(2)

若A1、A2、B1、B2都不为零。

注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。

5.直线方程的五种形式

确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

6.直线的交点坐标与距离公式

(1)两直线的交点坐标

一般地,将两条直线的方程联立,得方程组

若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。

(2)两点间距离

两点P1(x1,y1),P2(x2,y2)间的距离公式

特别地:轴,则、轴,则

(3)点到直线的距离公式

点到直线的距离为:

(4)两平行线间的距离公式:

若,则:

注意点:x,y对应项系数应相等。

高一数学知识点总结大全

幂函数的性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数_。

解题方法:换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

练习题:

1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).

(1)求f(log2x)的最小值及对应的x值;

(2)x取何值时,f(log2x)>f(1)且log2[f(x)]

2、已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f-1(x)图象上的点.[来源:Z_k.Com]

(1)求实数k的值及函数f-1(x)的解析式;

(2)将y=f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求实数m的取值范围.

高一数学重要知识点归纳

集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。

例如:

1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。

集合,在数学上是一个基础概念。

什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。

集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

集合与集合之间的关系

某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。

(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)


请支持知识付费阅读!感谢!

推荐度:

登录后免费下载文档

发表评论

用户头像 游客
此处应有掌声~

评论列表

还没有评论,快来说点什么吧~